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Errata Shect No., 1

"Vibrations of Thick and Thin Cylindrical Shells Surrounded
by Water," J. Greenspon, Nonr - 2733(00) Tech. Rep. No. 4

In the Radially Pulsating Cylinder (irart IV E) the expression for
the loaded Q is incorrect in the report; it should ve as follows:

P S
Q — 12a
(’a')a;fm)wwhf % " m)W'/er & C° aﬂao

Sr C-; y 4
Thus for the thin cylinder (-n-)a..x/

/
a_ = (—n-)w.-lg.— % + (-n-)wanfcv-% ZC‘;'? % g’°
The efficiency of the transducer is as follows:
: £ Co ap
Ef£c1enc7 o~ S ij 7: oo

S , LG 2 g

T fr G RT°
The Q and efficiency of the steel radiator with J=0-02_) P9_//0t=a—/2-7)
2, =0278, % =20 §=/ which resonated in water at 2, =/ is now
as follows:

/
& =] vy =/ <
2. 50 £ A2 ),
34 * o 7x0. 2728 x 20x /

Efficiency = 99 “Zo

The Q and efficiency of the plexiglass radiator with =2, -pvﬁ—'-aé’;r;

C"/C’,o 093, %”O/éd 0,32 which resonated at <%+, = 0. 2~ is
now as follows:

/

@

=/ 6
O 22 X 2.

3/4
Efficiency = £0%»

0. 22X 0.8 x0.33 Xr0x6. 3 2~
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LIST OF SYMBOLS

Ur radial displacement in a thick shell

Up tangential displacement in a thick shell

Uz longitudinal displacement in a thick shell

r radial direction

o tangential direction

zZ longitudinal direction

m number of axial half waves in the vibration pattern on
a finite cylinder

,@ length of finite cylinder

n number of circumferential waves in vibration pattern of
cylinder

f natural frequency

rr,ré, rz stresses on cylindrical surface of a thick

cylinder

Ritr) Rlr) R,(r) functions describing the distribution of the
J 4 . . N . .
radial, tangential and longitudinal displace-
ments respectively, as a functiaon of the rad-
ial coordinate

79,. acoustic pressure in the surrounding fluid medium

7%) forcing frequency of harmonic forces applied to the shell

Foen. (7) function describing the distribution of pressure in
the surrounding medium as a function of the radial
coordinate

A longitudinal wave length for the mth mode (m=1,2,3...)

fi internal forcing pressure

A... Fourier component of internal forcing pressure

£ density of surrounding fluid

(45 sound velocity in surrounding fluid

o (d, ) amplitude of the radial displacement of the mnth mode
evaluated at the outside surface of the cylinder

A. inside radius of cylinder

d. outside radius of cylinder

Fne(lnd,) = &w,\ﬂ—\dﬂ) bl Yo (B a.) the acoustic

impedance

ﬂ..... ~ Tresistive impedance




%Vv\n- reactive impedance 2

4én~ = [QJ-’/C.‘z - (zﬂ//\w)"] >

(t).... radial displacement of mnth mode of a thick shell

(Us)- tangential displacement of the mnth mode of a thick shell
(Uz)w- longitudinal displacement of the mnth mode of a thick shell

C ... Ce constants of integration for thick shell solution

' ¢’ real part of C;....Cq respectively

c,’ ('6“ imaginary part of C;....Cg respectively

/4;31 C’J’DJ/EJ/:/deflection constants for thick shell solution

aq, . a, b ... A‘ coupling constants between deflection and
pressure

., Ki. Bessel Functions of imaginary argument

T, Vo Bessel Functions of real argument

A shear modulus for cylinder material

E modulus of elasticity for cylinder material
Cd velocity of an elastic dilatational wave
48 velocity of an elastic rotational wave

gA density _f the cylinder material
2 Poisson's ratio for cylinder

R=4AFh A,
ﬁ = ﬂ'do//\,w\ ﬂ: WTQO/Z (for finite cylinder)

o outside diameter of cylinder
%-: 2%} 1 forcing frequency parameter
275 [/A,/PJ - (resonance occurs at eJ=p or Y=y,

fyf’ = C/Q, ;gg;ct)iggalihézsevelocity of waves to velocity of

A, . . Aec determinant constants

r, amplitude of forcing pressure

f(p) 2) distribution of forcing pressure

2 nondimensional quantity proportional to radial deflection

at outside surface of cylinder (exact theory)

nondimensional quantity proportional to fluid pressure at
at outside surface of cylinder (exact theory)

P
> = Z/g,
w forcing frequency
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(pfu)w'\— pressure in fluid for mnth mode

£ density of £luid inside tube

C: sound velocity of fluid inside tube

Cp = | Hm

Pr. inside fluid pressure due to vibratiom of tube
s, outside static pressure in medium

7:; inside static pressure in tube

thickness of tube =( &, — ¢ )
a mean radius of tube = (0..-#0%_ =(L%°_’)d,

Unw AL AAL .. longitudinal, tangential and radial displace-
s m~ ) 777" ™ ments of the midsurface of the tube (thin shell)
A e

BWWJ (’-».-A. amplitudes of the longitudinal, tangential and
_ . radial displacements (thin shell)
= TC = MATTOA - I+l
A /Ao 1 4= B
6/ mean diameter

b = |[(S¥-7, )= 3™
Ao \[ 2Oy, )t

)..(~) radial distribution of internal fluid pressure
7 0,_,/) b . ;33 determinant constants (thin shell)

J

damping constant

- (thin shell)

- for thick shell theor
PSPE e 7

/E&((ma‘) p _r—t.f')"':\-/"?:' (for thin shell theory)
¢t

parameters associated with internal fluid impedance

N

Ao

parameter associated with external fluid resistance

Re ¥y N Ab
1
‘ii\lbl

g parameter associated with external fluid reactance
¥/ ratio of damping to critical damping
A-, B, C. real part of Amn, Bmn, Cmn respectively
A B;/ ¢, imaginary part of Amn, Bmn, Cmn respectively
Ca tangential stress in thin shell theory

-iiii-




Oz longitudinal stress in thin shell theory
€s, €2 strains in thin shell theory

T, T, A nondimensional deflection parameters
2, A nondimensional pressure parameters
6’3) L nondimensional stress parameters

Pore phase angle
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ABSTRACT

This report treats the free and forced vibrations of infinitely
long pressureized cylindrical shells surrounded by water and con-
taining fluid. Exact elasticity theory is used to treat unpress-
ureized shells and an approximate shell theory is employed to
treat the effects of static pressure, intemal fluid, and struct-
ural damping. A study is made of the effects of these parameters
on the dynamic behavior of the shell. Comparisons are made be-
tween the results of the exact and approximate theories.

I. INTRODUCTION

There have been a number of previous studies on tTe vibration of
infinitely long thin cylindrical shells in water. =35 Although

the infinite shell solution cannot be expected to describe the
complete behavior of a finite shell accurately, it can be used to
point out a number of important characteristics such as the approx-
imate frequency-wave length spectrum, the reduction of the natural
frequency due to presence of the water, and the approximate magni-
tude and directivity of the sound field. Approximate numerical solu-
tions will eventually have to be used to obtain an accurate solu-
tion for a finite shell vibrating in water, but an overall picture
of the behavior can undoubtedly be obtained by studying the results
based on the infinite shell solution.

It should be made clear at the onset however, just how the infin-
ite shell solution is to be used and what characteristics it can
be expected to describe for a finite shell.

If we consider a fin%te thick shell with freely supported ends vi-
brating in a vacuum,® the displacement pattern for standing vibra-
tions can be represented as follows:

Ve
\ __— e ' cot
%/4_‘ ““\\ r:__l\‘ 4 P (ur)m“:'ﬁl(r)dm%jz;fwn& e ‘v
N R e S
o 'I. S i & T [ut -

!

(u*)w;,é,rr)cuz*r]jr_*mha e

o —
Fig. 1. The Cylinder
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J. E. Greenspon, "Vibrations of Thick Shells in a Vacuum," Office
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\ — 7, .
It has been shown by Arnold and Warburton . that such displacement
functions represent realistic end conditions and can even be used
to approximate fixed ends if the longitudinal wave length parameter

is redefined.

If it is assumed that the shell is extended to infinity in both
directions along the axis, the displacement pattern will be the
same as above with the wave lensth of the motion being Am = 25/
In other words, the vibration pattern on a finite freely supported
cylinder of length 1 is represented by two sinusoidal waves travel-
ing in opposite directions on the infinitely long cylinder.

Now if the infinitely long cylinder is placed in the water the
pressure produced in the water due to the vibration of the cylin-

der is as follows:

27 z
P (8 2)-C Z_OZW < (r) %R 18 e L2l
and for -each displacement p%tterr e
(U =R (r)em2LE g [3]
there is a pressure pattern, o
. 2 =
(Pt .= Fonlr) Corn Bdwvwz:\rw e (4]

Thus each elastic mode of given m and n excites a single pressure
mode in the fluid.
In the finite shell tnere will e no direct coupling such as this
because of the presence of the ends of the shell. We are therefore
making the following assumptions in applying the infinite shell
solution to the finite shell with freely supported ends vibrating
in water:
1. The pressure produced on the portion of the infinite shell
from A to B (see Fig. 2) by the adjacent nortions ( »~> to A
and B to o> ) 1s small

A . 5

Fig. 2 Wave Pattern on tue Infinite Cylinder

2. The motion of the ends of the actual finite shell do not
effect the pressurc on the cylindrical surface.

7. R. N. Arnold and G. B. Warburton. Proc. Roy. Soc., 197, Series A,
238-256 (1949).

8. R. N. Arnold and G. B. Warburton. Proc. of the Institution of
Mech. Engrs., 167, 62-74 (1953).




For modes in which the longitudinal displacement is small compared
to the radial and tangential displacements, assumption 2 should be
valid. Assumption 1 is incorrect for a finite shell but it is be-
lieved that such characteristics as the frequency - wave length
spectrum and the relative pressures excited by different modes of
the shell can be obtained satisfactorily. The vibrating portions
of the infinite shell which are far away from A and B will have a
very small effect on the part between A and B. tHowever the parts
near A and B will have an appreciable effect.

A previous reference9 presents the characteristics of the axially
symmetric modes (n=0)of infinitely long thick cylindrical shells
vibrating in water. Very special types of loading have to be
applied to the cylinder to excite these modes and their natural
frequencies are usually high. 1In spite of these facts, these
modes have been the most useful ones for transducer applications
because of the relatively large sound power radiated for a given
deflection.

In this paper the more peneral tyne of deformation corresponding
ton=1 will be considered in addition to n=0. The modes in which
n=1 and nz 2 are known as the beam mode and lobar modes respective-
ly, and are usually the ones excited by general types of transverse
loads apnlied to the surface of the shell. Modes of this type

have been known to produce unwanted noise radiation in submarine
hulls. It is possible that their low frequency characteristics
combined with their directivity possibilities could prove useful

in transducer applications.

IT. THICK SHELL THEORY WITHOUT INTERNAL
FLUID OR PRESSURE EFFECTS

The theory of nonaxially symmetric vibrations of thick cylindrical
shells in an acoustic medium follows the axially symmetric theory
rather closely with the exception that two more boundary conditions
must be satisfied on the cylindrical surfaces for the nonaxially
SymﬁgFric (flexural) case and the displacements are now dependent
on c

For these nonaxially symmetric vibrations the boundary conditions
to be satisfied on the c¢ylindrical interface between the fluid and
shell and on the inside shell surface are given in Eq. [5] (seeFig, 1
for notation).

9. J. E. Greenspon, J. Acoust, Soc. Am., 32, 1017-1025 (1960).




trla,, 8, 2,2) =y (a4, 2, ¢)
n—(q 02,¢) = £ (82 ¢)
ré (a,,/ d, 2 ¢t) = O
ro (a, 6,2 ¢) o
re (2Q’Q’2/t) =0
re (a;,62¢t) = O

The first boundary condition states that the normal stress on the
outside cylindrical surface of the shell is equal to the pressure
in the fluid at this surface. The second equation states that

the normal stress on the inside cylindrical surface is equal to
the pressure applied by external means to the inside surface; this
pressure will be assumed harmonic in time. The remaining four
equations state that there are no shear stresses acting on the
shell surfaces, the fluid being assumed non-viscous.

It will further be assumed that the internal . ressure is such that
it can be expanded into a Fourler Series as follows:

(et
P08 2 ¢t)-c" Z ZPm«w”z‘wmﬁ (6]

It has been shown™ that the OutSlde fluld pressure can be expanded
into a similar Fourier Series for the Infinite cylinder. By sub-

stitution of the expressions for ths internal pressure and the out-
side fluid pressure into [5], the following equatlons are obtained:

r"/ﬂ,) - L‘\)fa(.a o('wam (ao) m'n/jmgy)
ff(ql_) = p’h—w [7]
rete.) = réta;) s rz(a,)=r2(4;)=0

where
&2 = forcing frqquency of internal pressure
P, = density of the fluid surrounding the shell
€, = sound velocity in the surrounding fluid

o%n (a,) = amplitude of the radial displacement of the
mnth mode evaluated at the outside cylindri-
cal surface

T = O & L the acoustic impedance
y. [/
= [P L )]

A= wave length of the vibration in the longitudinal direc-
tion




It has been shown previ.ously6 that the displacements ¢, Uy, Uz
can be written in terms of six arbitrary constatnts Cl ....... C6'
Therefore the radial deflection ¢/ and the fluid pressure 7% at
the outside interface between the cylinder and the surrounding
fluid for the mnth mode can be written as fol lows:

(u()w":a_/[(c& 'A’+ Q'B'-/ C'_; /lef* lO’,ﬁ—C’.‘_'E',‘.["/_—')L
(-] ] ) / n ; , , , _, /,z
7‘(C/“/4 +(.3_6 "L(:g & fff_’o +c:'/5+4u/_)j

' ot —f
Cdanﬁa,m%':fie e B ) o

= 2 ’ ' ]
A, )P (4Gl G v (4G4, 0")]
/ ’ " ] [9]
[0 va, O (G 0" w18, 0 vy ) iy
# (54641 Uy C‘.l) + /é_r C:”‘%(’:~> *ﬂ(p( ,Ja( 0( t)jdﬂ) “&%%‘.ﬂt-fwo

where A'..... F', a aes ., b, b are as follows:

Table 1. Deflection Constants

Tf Wy < 20 | TF by < T one | TF ey, >3m0
“Spoo < 2/ s e, > 2T/ 2 Cly > 3T A

Al | W Tu(y) =~ Tty Y Lnei )= Tty ) | 1 T fy) - Tuny)

LR g M) —n T ) | I (g ) = iy ) | Yy )= ey )

' | ST (2) o T(S) | LT (1) Tnls) | TTui(P) -nTad L)

o

-7 /rv\—lff)-%/r\ﬂ.[f) fK-,/f)‘K K(f) j):-/(f)—% )/V«[,I)
E'l Iure) T.(5) 7 (1)
W= ) (1) | Yols) Yl F)

Rty ]
5{/ :AI/K/W"‘E q¢ = D’%%w/,? 6 :—A Mﬂh/;(' 64, :'p ,&’WW/S i
A, < @'%%nfe QJ,: E%A_,‘/: bz-_-_glﬁmv\/{— b::-E’ﬂ%“)—T- [1.0]
G -C' X K g, =FXm R pym=C' Bk b, =-FEK
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The pargmeteran,/Q.f' are explained completely in a previous re-
ference” and also briefly in the Appendix. The quantities Xmn and
mn are contained in a previous referencel and for completeness

are given in the Appendix.

Going back to the boundary conditions (eq. [7]) and substituting
the expressions for the stresses and impedance, we obtain six com-

plex algebraic equations in the six unknown complex constants
Cl""c6‘ Thes=2 equations are as follows:

[G,=(G, #4,) [ C 4 [Gy (a0 6] Co #+ [a- iy #043) ] G
#[Gg =Gy ri b)) Co # [ G ~(Gs+ibs ) JCc? {(Fs (G ib, )]0 = O

=
Ay Co+Gay Gt Aoy G v Ga G + G Cr+ Dy = /?»-;—j‘

G, Ct @Gt G384y Co + G Cr 4 GO = O
o) Co v Qoo O+ Gy O+ us G + Doy Cr # At Ce = © [11]
e O+ s 1 s QO+ Gy G +#Qr G+ 6 = O
o C v g, C.+%C +G,C +Q.C-+d,, & =O

where CI:(’:"*L.C”) 0L=(=LI+‘-'()1HJ03:Q/+L'G#
G Coled G J 0::4,'7‘/.(}") CK =C5 're Cfll

and where &, . HAee are the coeffic%ents for flexural vibrations
as contained in a previous reference® and also in the Appendix of
this report.

Let the internal pressure be written as follows:
cat
2. (0 2¢) = P.fr8 2) e [12]
The deflection and pressure at the outside interface of the cylin-
der can then be written




/Ur)w,\:[z Po Q/A//JK/Q i‘)a.mlvz-mmﬁé/ed,?w _;._/,‘,_,_e_w déz/»t‘/w*)

(P [-r/\“./ /‘9 i’)m‘”‘mwde/ajPM_L.m o @t ¥

C/WN is the phase angle (13]

where £ and ~ are nondimensional quantities which have the follow-
ing values:

£ - Zﬂﬁw“dﬂferatkc'f '~ Egq. [?.7_]
Pz fpa’f Grace i~ By 1 ¢ [14]

The nondimensiaonal quantities R and £ are functims of the forc-
ing frequency «J , the thickness ratio =« = 4 /4, , the wave length
ratio 7T do /7 o - , the circunferential parameter n, Poisson's

ratio o) , the wave velocity ratio C°/C, and the density ratio 'P°/Pt

The expressions [14] can be interpreted as being the nondimensional

transfer function due to the Fourier component pressure Pmwn. For
a finite cylinder of length £, ) 22 so n:/ — AT,
o~ 72

(assuming for the moment that the theory was correct for a finite
cylinder). Thus expressions [13] and [l4] give the deflection and
pressure in the mnth mode (i.e. for a g¢iven nodal pattern m and n)
as a function of the frequency ¢» . Thus for a given cylinder of

physical parameters Q%O R do/,Q , o, W vibrating in
fluid with parameters c°/0f fo(ft , expressions [13] and [14]
/

are the deflection and pressure response factor in each mode as a
function of frequency. The trace of R vs w will be analogous to
a single depree of freedom (mass spring system) resonance curve
which starts out at a static response and peaks at the individual
frequency of each mode. The response to any load distribution
can then be written as

ol -

(//,— = Z MZW[U’)MV\,
Pre = 2 P -

If we wish to uncouple the modes completely we can apply a pressure
which has the same distribution as the deflection, i. e.

2006,2) = Poaim TH g @it

In this case the deflection and pressure are
o ' L’(Wt—(/\«—m
Ur:(Ur)wK:—é% szzi‘m a )

L (Wt‘ém —\)

[16]
P = (Pru. = Po (P) e L= cnroe

A
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The same theory also applies to elastic waves traveling along
tubes which are immersed in water in the same manner as described
in a previous reference® For this case we can plot ¥ = C/ _vs

- mdo
/= /C*M which gives the dispersion curve for elastic waves
traveling alone the infinite tube.

IIT. THIN SHELL THEORY WITH INTERNAL FLUID AND PRESSURE

The exact theory as given in section II is quite cumbersome to

work with and requires long computation times even on the electronic
computer. Therefore, for practical purposes an approximate theory
was developed including the additional effects of internal and ex-
ternal static pressure, internal fluid, and structural damping in
addition to the effect of the outside acoustic medium. The compari-
sons between results of the approximate theory with those of the
exact theory demonstrate that the approximate theory can be applied
for rather thick shells.

We will use the following nomenclature for the theory:
/psa l'fi; Ce J Pr,

3o Yz
o - - {;—p [' 1 )r

i .r/ T)L 7! M (¢ F .
|'I ! | \ ) Y 0
| I'l iy g ' f{t -
\\ S/ \
S \U
#. = internal or external driving pressure N\ EA Y p C
#s, = outside static pressure in medium T
#s. = lnside static pressure
#,, = outside fluid pressure due to vibration of tube
75 = inside fluid pressure due to vibration of tube
= = modulus of elasticity of tube material
- = Poisson's ratio for tube material
A = thickness of tube
a = mean radius of tube
fi = density of tube material
¢, = velocity of sound in outside medium
£ = density of surrounding fluid
¢, = velocity of sound in tube fluid
p. = density of fluid inside tube
¢, = velocity of rotational wave in tube

Fig. 3 Pressurized Cylinder with Fluid
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The bluo"elo shcll cquations with the addition of structaral Zonp-

O

ine, inside and outsicde f£luid are as follows:

3 2
g3 e= /¥ I u I, 2D, DX £ /—Jdu 2Jar, /-J JW]
z 2 1*')6‘()34 “ 3 Jqup + 2 d¢ - I + 7 T % Jop %
-2 a’ +) 2% 42//—.)‘) Ju f Y, dw _ @
E {/—AJ dt& - EA = ﬁ- f-{e)é ﬂ—‘) /ﬁ " L/)
140, D2y Do -0 ad b Jr L™ S
7a = = = /—J) 2 J i
- Au‘;u)q‘ +J¢1 * < a S0 +a¢ +/___—2‘L 3/ 1)):/: 3- J" la‘;; Li7]
- et /J"/: G oz )A"JV- /7°: 7’..—,)4//—5)") aJd
& 4T FL EL Jx >
Qu dv— 1=J, D& 3073
A N AN Y _ 3 2 zJV‘ Jw- 2%
B S 5¢ ) )l ¥ ,_/—2 f)u¢,. a J_éz_ = 4 1J¢ a“ *25',352:;7-
JW—' Jrv\f ] JW -
-+ - 2 A + - A T/ ) Jw— —_—
By / )ffz' + _.ﬂ__(/ o) === s * L Jt =
Polorp 22027 L 7%] (P &)a/, ,)[,)v,g ,w] Mﬁa— 2 et ¥, ¢ :)):»_«:
In the above equations k aq/ » OVt F< VC/at are the

structural daijine f01ces per ‘nit area ‘in the x, ¢ and r directicns
respectively.

The displacement components for the infinitely long shell are taken
as follows:

‘w T
uw-\ '—AWKW ZTTL/)\»M Cﬂ-‘f‘¢ @Lw

i B e > A oo ewtt (18]
'MFM.«“- Ve A A—MZT‘L/’\W C%V\q[j C‘-w

wvhere Amn, Bmn, Cmn are the amplitudes of the displacements in the
nnth mode. The fluid pressure in the surrounding fluid can be
written as follows:

/7)_—/,)»,\ LW A (’y ﬁww Jivm([mr)mwx(ﬂ%l—%f: &
vhere Jmw is the ~coustic impedance of the fluid as described be-
fore. In thin shell thecry it is assumed that loads are applied
at the median surface, therefore the acoustic impedance is as follows:

jmy\ = ﬁwm + L )['\A-\ -~
I£ f//-("/(’ >/ o
X%ﬁ/lm— V= —5 V Co(’[]v\ﬂgwﬂ)[' Mf//‘&*“) "j_— /l»—ﬁy

(b )R thes) 2 e 0)]
A [Tt s N [19]
+[' '\—\w/Z\MA) 7‘*1 YKéwA)J

10, W. Flugge, "Statik und Dynamik der Schalen," Springer-Verlag,
1934, p. 101 and 229.

e cut




=, O,
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The fluid pressure on the inside of the shell is the solution of
the wave equation

£20]

PR

7%: - J P [21]

Jt*
For the infinitely long shell we can write
2 'AJZT
/f_,c )Ww ﬂn/r)ccakyw 277 X c (221

1f

Vc'/CL>/ %ﬁ-\’\ = ‘A—\V\.J(/’r)
«ia-[(,\vff‘f/c yr-ir]*

,/,_(’r/e‘:</ fwu = p»w[m[’z ") 23
4,5-[;—/4\#-0//@)_7" b

The constant Omweis determined from the boundary condition at
the inner surface of the tube

A = _L, 9/703“.)»»:7 r
w»,/ﬂ, éJ Foest Jdr rze [24]
We take the internal driving pressure to be

2 (82 )- c‘“ZZ’O CAnE am TBE [25]

M EC AT

Substituting the expressions for the desplacements and the fluid
nressures into the equations of motion, the following set of equa-
tions result:

Aw'm[q;l'f‘é.b/;:]"" 6WW[412/_7 e C ~ [413 /J =O
Ame [0 ] + Bos[ansib)] +Cu [4,)] =0 [26]
/4%' [ﬂ3l J + B‘nw [431 _7 d‘wh@j;*{_ 63';7 41/— L) /Q.
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The damping coefficient S is determined from the formula
s = 2’*7—4/@’0 (where K =2xp b in equatioms of motion)

where EE/P = ka (ratio of damping to critical damping)

We first compute the natural frequency » without damping, then
assume a ratio of 4 , calculate A< and then S .

From equations [26] we can obtain the complex constants
A= Asi Ai Bunz Beri By | Conz Gl G

where subscripts r and i denote the real and imaginary parts. The
expressions for the displacements and fluid pressure can then be
written as follows

CCnst e P )

U =) A+ ALY cp EE L g
—_ : (OnT =~

- . ot =P
A T e T e M‘_Z_*— vax¢é‘” #ro-r)

Vi

Wf&)mm = “)fo CO l/(cor)(mm.* (v._' ﬂ—m.«\) 1—#((; ‘9‘».\«. —CJJ /Zw'«) LW\%Q%%C

Lt -fan)

(%c;)ww\:fﬁwl PN ’V‘/:‘-m

The formulas for the longitudinal and periphery stresses at the
outer surface of the shell are as follows:

B AN XA D e 2 Y\ /- _. -
/G;)%“-P Z-V( /\A 3,.-1' o A (‘r +I%§—M»C+JIE(‘f) -f-(-,\A"_f‘)\\BL-'.(,\la.;._eéhkqt_;_):-_(“.))—[29]

_ Pawﬂ_v o a2 <2, )2 , > "
(6;)»., - Z (-OAA+n B, 4/_:3 = +;-_+j-’_('—c’“)'?’\'r')+FVAAJ“B‘:*/E“Téﬁé‘q*‘)-u?})L

Substituting the expressions for the displacements we can finally
write the equations for the stresses as follows

2 — . e (it ~fn
ﬁji,hyn 0% fa»n.-44~\%i3'<naouqﬂ e ‘ )

(U;/)Ww = @ ﬂ_w Mz_?\%\:wky Z(_' (Wt‘%ww)

(30]

The deflections, pressures and stresses can be written in terms of
dimensionless quantities as before with the thick shell.

Assuming that the internal driving pressure is of the form given
by eq. (25] the formulas are as follows:

-12-
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(oo = P B neme W5 mh¢24/wf-qﬂw\_\_)
%z&d)wm :/ALW /%'4~;'%F}W2lvx¢’e J/w13—4&‘M)
if 77," - f/ft) E:.wf
~en 2]

(“M d‘?/sﬂ

B [ e a2

For any loading which is harmonic in time the total response will
then be the sum of the modal contributions as explained before for
the thick shell.

In the simplified theory we can determine the deflections fluid
pressure and stresses as a function of frequency for the follow-
ing input parameters:

Wave length parameter A
Circumferential parameter ~~
Thickness parameter o

Poisson's ratio =

Damping parameter S

. Static pressure parameters g, &,

Ny BN e

8.

Wave velocity parameters
c I Co
f'/CL/ /c") /C?o
Density parameters

fﬂ{?t y fk/<ff

Since the above solution is again equivalent to the solution for
two harmonic waves propagating along the tube,we will also be able
to study the effects of the input parameters on the propagation of
unattenuated elastic waves in the tube wall or unattenuated press-
ure waves inside the tube.

~-13-




IV. RESULTS

A, Correlations between thick and thin shell theory for shells in
an acoustic medium

Fig. 4 gives comparisons between the exact elasticity theory and
the approximate theory for shells vibrating under water. 1t is
seen that the approximate theory is excellent for shells with

a ratio of inside to outside radius of 0.9. Both the natural
frequency and radial displacement are predicted very accurately
by the approximate theory. However for a much thicker shell

with a = 0.7 the approximate theory is not accurate for displace-
ment prediction. The approximate theory essentially imposes con-
straints on the shell since an apriori distribution through the
thickness is assumed. Therefore the approximate theory predicts
a stiffer shell with consequent higher natural frequency and
smaller displacements. These characteristics are illustrated in
Fig. 4 where it is seen that the resonant displacements predicted
by the approximate theory can be in error by a factor of 2 for the
thicker shells. The natural frequency on the other hand is pre-
dicted within several percent by the approximate theory.

B. Comparisons between natural frequencies in vacuum and in water

Fig., 5 presents plots of frequency parameter,<- as a function of
longitudinal wave length parameter (3, for various circumferential
nodal patterns. For the thicker shells (a = 0.7) it is seen thnat
the water effects the natural frequency very little. For the
thinner shells (a = 0.95) the water does not effect the natural
frequency for n = 4 as much as it does for the modes of lower n.
The frequencies for the first branch of the axially symmnetric

(n = 0) mode at long wave lengths are unaffected by the water,
since this type of mode is primarily longitudinal at long w:ve
lengths. In the infinitely long shell water pressure only comes
about by virtue of radial motion. The water does effect the
second branch frequencies of thin shells at long wave lengths
since they are radial modes giving rise to appreciable added mass
of water. The beam mode (n = 1) and the lobar modes (n = 2) have
a radial canponent of displacement at long wave lengths (smallp)
and therefore the natural frequencies in water are considerably
effected.

C. Thick shells - higher branches and higher orders

In the thick shell theory, for each value of n and B there is an
infinite number of roots. The first resonance defines the fre-
quency of the first branch at the given n and B, the second re-
sonance defines the frequency of the second branch, etc. In
wave propagation analysis or in general forced vibration analysis
the importance of these higher branches and higher orders is of
sienificance. Tables 2, 3 and 4, and Fig. 6 give the deflection
amplitude for several of the modes.

14 -




For radiating modes (8, ,,>> 0) it is seen that the higher orders

(n 3,5) correspond to much larger amplitudes for thinner shells
(a 0.50, @ = 0.70). The second branch for a cylinder with « = .0L
B = 0.8, n =1 shown in Table 2 corresponds to much higher awmpli-
tudes than the first branches for n = 3 and 5. Although not
illustrated in the table, it has been found that this is also
true for the next several branches of the almost solid cylinder.
On the other hand for the shells with a = 0.50 and a = 0.70 the
amplitude of the first radiating mode near resonance for n = 3
and 5 is of the same order of magnitude as the first radiating
mode for n = 1. The first radiating mode for n = 1 B = 0.8
corresponds to the second branch.,

Sound power generated and resulting stresses

The average sound power transmitted to the medium over one per-
iod can be written as follows:

(Ruehe = + | | rrdadt [33]

where T = one period
p = pressure
v = velocity
A = area

Substituting the expressions for the pressure and velocity the
follcwing expression is obtained for the power transmitted by
the mnth mode

(Fave)ue= | J (7 Coitonin ccnmb ainBS ¢F) [34]
(Cotidom . G2 M Barn Ir e ‘:“"t“ﬂ“‘*pdﬁt/f

Integrating with respect to time
(Bove).. = Z’Jﬁc;w;:cu{f;\m% bar? Zf\Q‘Qeq/,...dA {35]

where Ca.z% = _@ww
b B fw-ﬂ—

R (P"VG)Wf_:éA/ﬁcaszwlﬂwn@Q%aMzz%dA [37]

The average nower transmitted to the medium can then be written
as follows for the approximate shell theory:

(36]

For the axilally symne tric modes (n =

0)
- ", =) C ,%A
(Forc)uy= 2 520 [1 00 RG]

and for the nonaxially symmectric medes

= /_)1—1 L. -/-ZL'L—A;]
(e o :"—i:i G Lo iRCFAE
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In either case the power transmitted can be written as

(Rue).. = B[t hon 4]

where F is a factor depending on the mode and the other physical
parameters of the shell and medium. The term in the brackets is
independent of the mode and thickness of the shell. 1In the above
formula

non dimensional radial deflection
h

a
= non dimensional frequency parameter

Y

- = resistive impedance

= density of medium

density of shell

= velocity of sound in medium

= Poisson's ratio for shell material
= modu lus of elasticity of shell

= internal forcing pressure

It

P ML D i%blxl
[t}

surface area of cylinder

Thus for a given shell material, a given surface area, and a _
given internal driving force the power will be proportional to F,.

The output power cannot be used solely as a measure of the radia-
ting characteristics of a given mode since large powers can be
obtained by using large driving forces, tnereby inducing large
stresses in the shell. The maximum stress induced in the shell
can be written in terms of the internal oscillating pressure as
follows:

Omayy = O, P

where P. is the internal oscillating pressure and OTma. is a
nondimedsional quantity which is independent of the driving
force. The following ratio therefore is a good measure of the
power~stress capabilities of the shell

2= =
- — .

(Sna)
For a given size radiator of surface area A made of a given mater-
ial of modulus E and Poisson ratio -) , the ratio R gives the power
that can be transmitted into the medium for a particular mode
with a given maximum stress induced in the shell. This ratio is
tabulated in Table 5 for different modes of vibration.




The results of Table 5 indicate that the shell must be driven
with very large forces in the lobar modes (n = 2,4) in order for
these modes to radiate just a fraction of the power that is rad-
iated by the axially symmetric modes (n = 0). The first branch
axially symmetric mode is primarily longitudinal at long wave
lengths (small B) and consequently radiation from the cylindrical
surface takes place through Poisson coupling. The second branch
is primarily radial at long wave lengths and is the most efficient
radiating mode of a cylindrical shell. This latter type of motion
can be achieved in a cylindrical transducer either by keeping the
ends of the transducer open so that uniform pulsing can take

place or by making the shell very long compared to its diameter

so that B will be small. Simplified equations for such a radia-
tor are derived in the next section.

Althouph the first branch resonances of flexural waves for n =1
and n = 2 are not associated with any radiation, Table 05 and Fig.
7¢ show that the sccond and third branches give appreciable rad-
jation. For these higher branches for n = 1, 2 the power stress
iatios)will be of the same order of magnitude as the radial mode
n = 0).

In using larpe steel radiators, the main difficulty is weight.

A lone steel radiator that would resonate at low frequencies would
have to be huge. To resonate at 200 cps in the radial mode a
steel radiator would have to be 27 feet in diameter. Therefore
materials with lower sound velocities or methods to reduce the
sound velocity must be sought.

“quations [or a radially pulsing cylinder

Assuming that the pressure in the outside medium is equalized by
the static pressure in the internal fluid the equation of motion
of the purely radial mode of a shell can be written as fcllows:
(see Eq. [17]): '
~al-0¥) Qi a*i-v*) e G%-0%) * Pa-0%)
L == == — . - o= U

E ot EZ apr- 5-7—(70,, )t E
Substituting the expressions for the external and internal fluid
pressure due to sinusoidal radial pulsations of the cylinder the
equation of motion becames

- TG G-v*) a®i-vt)
- f—Z =2 Kt flo “Eg 5ac] o
Poali-v?*) @) Y- vo
[_L—E_+fLa fE J );a *ﬁcoé /Eu )Xw]
] 2* .
Z_/* /25 Pal(r-v*)

= TEZ

fL' 2 _a;ﬁ-ul) 220 *ﬁ Caglﬂ-pl) x_g’«_] _}P“?ﬁ_‘\) f“ﬁzﬂ'v") (‘azﬁ"l)ﬂ’ao
_Z EI [2¥] L‘tn—fb £ o°+f;‘T£\_ZJ

[pt a?r-vo*)
_—F +
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, Lot .
Letting w = Ce*® and solving

Pa-ur) /54_

C = — - -

s A E B B EE A B 2 5]
W

o' [_A) = 7o (0 ‘\) = /A“) »l‘ - &9

& Sl TrE 12773‘ ci
11

and using the plane wave anproximation

Xoo(a) = /+(’/ fad* Ao = %

~
&”(p) / # (/Af)
The numeratsr in the equation for C is the static deflection under
a static pressure P so that C takes the form of the standard reson-
ance factor for a single derree of freedom system.

The natural frO”IGnCy is determined from the equation
A P £ & a
(vf—lé— ) - I+ 5 éh\f = = f%f) = O
/2. * jt f-e C’o 1 L
The values of -A which satlsfy the ahove equation determine the
natural frequencies of the system.

The @ of the system can be written as follows:
@ 6\)"6<L‘Pt42{/ vt) Pa%__’))/m FPCa 2/ o) x,a.,
ST + £ G Beo Z2Cp)

usinn the freouency equation

-

124 &

Pc‘ ( 1/ -y )'r 'f‘ﬁ) (' 900 _91’)

1f $ = lOQurlthmlc decrement for structural vibration of the shell

material, then P
Q a 1+ 2
- —zi *—Pu Caa
—a277_ +n'tz7A£
1 % £ 0.1 then to a very close approximaticn
/ -1: Pac a&
= = = +
Q =il 27 th(;o co

The efficiency of the radiator is as follows:
—n f% +.n_;i-4 T Geo
2a*s , 7 L& & A Bso

or usine the approximate formu{A for the radiation impedance,

Efficiency =

11. Hueter, T.F. and Bolt, R,l.,"Sonics," John Wiley & Sons, 1955,
p. 58.
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At the present time very little information is avallable on the
structural dannrine of new high strength light weight plastics.

A study of these couations and the rossible use of diffcrent La-
terials will therefore be the sibject of a fature study, howsver
a very rouch estimnante of the order of manenitude of the Q and ta=
efficiency of a steel and plexirlass radiator is made below.

Usine~ the thin shell theory derived in this repcrt, it was found
that at lon=? w ve leneths tho radial node of 2 steel radiator (air
filled) with 44,—0 95 had its resonance at.n = /. Using a logar-
ithnic cdecrement of 0.02 andf/p =0.127, %4, =0.278, § = 20,

the 7 and efficicnecy are as follows (neglectlnv any other losses
seside internal structural da amping):

N

(? = / / ¢
02 | . 27 Xx.27F X 20 x/
¢ 2y

ffficisncy & 100%

For a plexielass radiator wlthﬁV =0,35, aé;
sonance cccurred atfi =0.2 with a value of 8
tires the danpine in plexiglass as in steel

Q = / =~/ 13

=y 4. 22X FSTK, G IXxIOX. 3 4
G 2g

sfficiency = 79 9D

.93, % = 10 the re-
32. “Assumning 100

In s»ite of thr comnrratively lower efficiency of the plexiglass
radiator it s.wuld be noted that in order for the stcel radiator to
resonate at 200 cps it would have to be about 27 feet in diameter
shile the plexiclass radiator would be about 3 feet in diameter.

for thr nlexiclass rahldtOl lt was found that

— 2 = 0.0323
Ty = e
For the steel radiator
E — - i ————-/6:2- = /r?
/0'~»<) 724 2)*
Hlowever since the moﬁulll and mass ratio of steel and plastic are
different the v tio of ‘“,é;u‘) must be token instead of FA, )™

evf ] ,45:51»"7(;(5 LR ] 6-7‘ I'{EC/
(GwJL S'f'tc/ P /45 o Gec s £
Pvc —~ O' 7 7‘ Af-: Swrfrce Arca =
4 74 p/ﬁxra/‘_;s PAJI"/DV‘

(O—n—‘a-()-& /’/5,,"/4:5'

-19-




So that for the same area the power stress ratio is almost the same
for the two materials. The main advantage of the steel is that it
has much greater stress capability and therefore much greater power
capability.
Taking the safe alternating stress in the plexiglass to be 2000 psi
the power output for this working stress would be
P = 146
. se 00 res)*
S Pue=G2f Sx.prx 8800 Xl s)xa/ L Ap
- o.4x/0% 2
— I . .
= /9/6 A, -_(Tc (AP 1 Sg ./w.)
Taking the safe alternating stress in the steel to be 20,000 psi
P - C&ES

[

P 5 ~rx,/I7xdqoaoxéiJ91Lq/ < ﬁ{/
. fave T 6T ' 3ox/0€ 7

= 22/ ‘00 /45
The steel is thus capable of delivering ten times the power as the
nlastic, however the size and consequint cost of the steel radiator
is the actual drawback.

I1f the plexiglass radiator were 20 feet long and 3 feet in diameter
it would have the capability of delivering the following power:

/?fc = )46 xmd¥
- )G/& x B./4 x 36x2¢40 = S/, 978000

Fio
Sec,

= SEDOo m/owaﬂs

If the working stress were cut by 10 the power would be cut by 100.
However this would still give about 60 KW. This indicates tnat a
plastic ra iator could conceivably be used as a high power low
frequency sound source althouph much more careful study is needed
before an actual desiecn can be made since many important factors
have been left out in the foregoing 2nalysis.

Some effects of internal f luid

Fig. 7a and 7b give some typical response curves inclucing the
-ffocts of internal pressure and internal fluid. It is seen that

the internal pressure and fluid have a larger effect on the lobar
mode freaquency (n=2) than on the axially symmetric mode (n=0). 5
This ceneral effect of pressure is also shown by Baron and bleich®

in their more extensive calculations of the effects of internal
pressure. It is also illustrated in Fig. 7b that the internal press-
ure tends to stiffen the shell thus decreasing the static deflec-
tion for a given driving pressure. -

-20-




i

For the internal fluid cosidered here the natural freguencics of
both the n = 0 and n = 2 modes were decrerased 1nd1cut1ng that for
these frequencies the internal fluid has a positive reactance.
Cther cases can exist where the fluid has the opposite effect.

In general it can be stated that unless the shell is extremely
thin ( #/& < ©.0/ ) the internal fluid or is:ressure will only

have a small effect on tne freguencies. It was pointed out to

the suthor that Dr. G. B. Warburton had found similar results for
thin shells winich he reported orally at tne 3Stresa Conference ssv-
eral months ago.

Electronic computer codes available for calculation

This report contains only a small number of the results that have
been computed. It has been the purpose of the reyort to present
the basic theory and some gcneral trends giving the effect of some
of the physical parameter.

124 709 codes are available for computing the response curves for
thick shells vibrating in any fluid. This code is based on tae
cvact elasticity theory presented here. Ior tals code the comyuuater
abulntes the radial displacement, the resistive and reactive im-
pedance and the external pressure for any given driving frequency.

Codes are also available for con;wutine the res,.onsc curves of thin

pressurized shells containing fluid. For this case the comj:uter

nrints out the axial, tangential, and radial displocenants; the in-
ternal a2nd external pressure; the resistive and re ctive L“{edance;
and £he loneiltucdinal and tangenticl stresses. [Fur tic c¢xact tihieory

it takes about four scconds to c..lculate the response at one fre-
caency. The aporoximate theory crucluations trixe about one-half
sz2cond for e:ch frenuency.

Usine t=zse o~ ies together with the general relations presented in
the earli~vr part of this r2port one can comtute the forced response
of thick za4d tain cylindrical shells vibrating irn an acsustic ned-
iam,
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body of the report are as follows:

W/CP < Zn-//\“‘w

and

G, [ Yoy 1.,__%64371)]1—,/7)-71;-,/,)
b L 5] 1)y Fooy)
3=l mr2*] L(t) - L T0l,(S)

Go= (2t r PLIM(F) + £ oo (r)

Gy = "/h*/)];/f)f'-rr‘n—//f)

Ag= = (me1 ) (7)) - L Hi-,(7)

a,, :['k 2 ¢.(37"—/-_Zzlfl-:¢$ 3—17'7]-7: @7) -0/7-22—,(,/7)
Gy 7 [ +°("‘7‘~-I_>:_-<)’;¢4’:7%)]n 0,) *"/ ﬁ—/&‘;)
Gy TZ—M‘;L‘»A.-fo(lfLJI-.,ﬁ(f) —ot ST, (' T)
424-’[%"-#%-#.('!‘-_7/;’1(9!) Pl S - ()
s = S Zney (1) =/ 4,) T (wr)
o= S Mol t)=Cnsi ) Indics)

Gy = (n s T2ly) -y Doy

Ga® ) IRly) g 15y

G3= Cnr ) (L)L To (?)

Grg = Cns 1 )0l 2) + LI ()

ez~ (R385 ) Ztr) o T 7n ()

Ge =T (R 1435 )mes)- L )

=22~

.4g¢ which are contained in the

Ao IE g, < 2T t hen /
- = 2, /e 2 2
S v Ay iy

Gy, :6\4/)_7;5/7)—0’7 Tn-, ()
Gar = One) ) Mnts ) #ery M-i ()

Gy = Onvs) Tt £) - T 752, (1)

By = (mt1) 17 (is) 403 M-, (s )

yp =5t 143%" I;:C:r)#ié T fp)
Gns T gL ) b))
Gy =’7—Z——//‘7) ”"'—7:/7)

ey = ‘[7 /77»-,/7)4"\. r‘ﬁ/l; ).7

G, = f[w;’—fj[fj; - (%) —nI;/fy
Da=4 [1r f;f]fm., (£)-ntrir)]

Ger= Lle)
G = /rnzfg)

., = 0'713\-/6/7)—»\ oty )
7% :—[‘1’7 /I'».-//q«?) # 2 /T:\[0(7)__7
%z =4 [t e s T tin) - Toter)]

a

Gy = ey /+£-]-'-(_r/7: 1 L) /ﬁﬁ(f)J

/6}
dc: = I(wz2)
<

-




Bo If Wiy < 2TA.. “/, >/

=L/ ¥ = ’V 7;(/, 5

and

ﬂ,/‘[hl-f\'\-‘f?_ //5 7")]-7-/7) 7I /7)
0,; [’L -fv\,~r71--2—

_‘) 1)]lr\./n,)+, ,\-‘/7)
Ay = [om e J"JJ;(’J‘) -l
Gy = =/ Yt ] K (7) - - I n-r)
Gy= T T lL) =t )T CF)
Ae=T V% (T) =l ns,) VilP)
@, = [ s ~+./’-7.. _h)!/ 71)]]‘ 67)--(7]:-/./)
Z Ny R VR 1»'* J::J 7R ;)]rr/ )+ /7',-/;/7)
%i =t ftjvk/r)--’ffn- %)
Fae 2/ 23] L) T Vi fr)
41,-0(,:'7,_,/”)_/”,)&/«:)
26 = 2T Voo (1) = mr1) Yl=r)
(‘h#/) Lnly) =9 Thn- )
327 (o 1) Fnly) #9 Maily)
433 = (et ) TUE) - T T ()
Do = (1 ) YlL)-T Kol2)
Hrz LRG0~k -2 r)
o= D e ()12 L2 )y 17 )

then

é = (1-20)T ’;‘//

27:=J)

&, —/V\-f/)]-‘/)‘o(v]:\-//'/ )
C/ﬂ—/nw)ﬂ:/d,)n( ﬁ:-,ﬁ’ )
4, - /uw)f,ﬁ/f)-o(ff 2 2 Ku)
4,,= Ao )KL L) wS Ko 1)
04—’ 1) (*'L“Lf AT ts)
s, = '7.7:-,/,) w I fy)

q“- [7/:— /7)4—.»/7— =0y

%3 if- Bz G- ~Tlr)]

Qg™ ‘z/—f S K () Yatr) ]
Ay = /f)

QA’(’- = \C’—Si’-t-)

ﬂ(l :Qﬁ; vll'/h,)‘“'] /.‘7)
;.= [ n-i 6o ) +"‘/T:\f°’7).]
i3 =‘[ ];jf-/ tar)~ hfﬁf_r)]

Acs =4/ /«;Jéz.r Kesleerd-mylug)]

Goy = Tute?)

sg T

LACES
<




C. If &y, > 2.

T=p v

and
G, = /m l,«w—? 0 4y )Rl g Tl
4,;’[%4\—\. 7 _“/,4 X )]Y/A)) Vi "/7)

d; [‘r\-f»\.-f _7.7'/3‘) T (1)
Da= >4 ~L3] Vel) =T Ya-,lr)
G15=FTncill) =Cne, ) Tlr)

G =TV (2) =tor )V LL)

Y =[-—\1+n~--<27

oy Zot f Toerfap)=lon 910 T (i)
Gig =LY (#2) ~(ms1) Yil<p)
43,'-'/‘\«*/)7:/7)—7.7:-//7)

iy bt 1) Kly) =9 K- ly)

sy =t 1) Tuly) -T T (T)

Aig = Cwr1) Y;\/f) -J . //f)

4= ZTL00) /*'L-" S )rcr)

43;‘-‘—“ K () =1+ 4~ I—)X/f)

-4 _

J W/C'r- > ZIT/A‘W\—

AP [P ) T )
A=/~ 1+*~--(}\,‘- %6‘557‘)__7)1/-'7)-‘:(7 K- )
Dy =[S ] T lvr )= ST, (v )

A9 =[P 3] Yl ) ot S Yoo foe 3 )

- [//—za)fi/sl‘j/”?—
i f 2071-)

d’,/ = (hw)‘]:&/,?)—o(,?];-:/q)

0?2:/'\'\*/) KA/;;)‘“(v x—/ﬂ’l )

‘ 444=/M+/)KIQJ)'¢J’K-/K4!)

o5 = FE Ry )10 £ 202 VT ey )
2 =;"f-§ Keiler)~(1+ £ -512{2'))/,\&_7‘)
s/ =7I'//7)'“J;/7)
q“_ :;7 Yo /17) ‘\—\.)//7)
Qez =4 /——]/}I-,/f) hj/f{/
2 =ﬁ[/—é][f}/h_, (5 )-w )f\/f)j
Ay = TnlL)
2
Ta = BLL
7 :cr’;)x-;ﬁ/7)-h~7:~/°/7)
ey = ‘>.‘7 X-,ﬂ,?) - Xy )
Ge3 =4 [i= Gt [fts Fooilas)onTates)]
Geg =4 1= Bl Ko les)on Ko ]
Her = Tulxs)
z

-4“ = K\-("/J’)
2




I1. The evpressions for the resistive and reactive components of
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